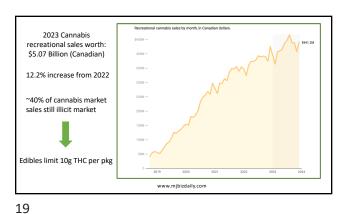
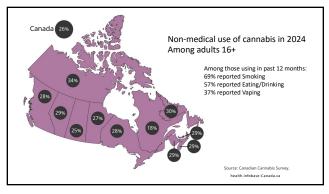
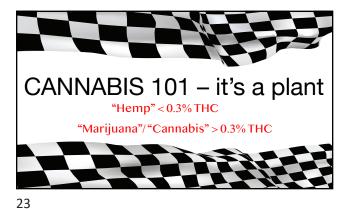
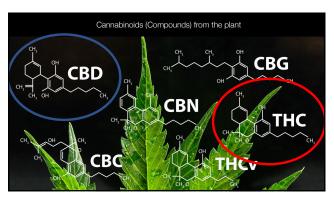

		TRP	transient receptor potential
Abbreviations		MS	multiple sclerosis
THC	tetrahydrocannabinol	CINV	chemotherapy-induced nausea and vomiting
CB	cannabinoid	BBB	blood-brain barrier
THCA	tetrahydrocannabinolic acid	HER2	human epidermal growth factor receptor 2
CBDA	cannabidiolic acid	FAAH	fatty acid amide hydrolase
CBNA	cannabinolic acid	MAGL	monoacylglycerol lipase
CBGA	cannabigerolic acid	VEGF	vascular endothelial growth factor
CBCA	cannabichromenic acid	ERK	extraœllular signal-regulated kinase
CBNDA	cannabinodiolic acid	MAPK	p38 mitogen-activated protein kinase
GPP	geranyl pyrophosphate	Nupr1	stress-related nuclear protein 1
OLA	olivetolic acid	ATF4	activating transcription factor 4
GOT	geranyl-diphosphate:olivetolate geranyltransferase	CHOP	C/EBP homologous protein
THCAS	tetrahydrocannabinolic acid synthase	TRIB3	tribbles pseudokinase 3 protein
CBDAS	cannabidiolic acid synthase	mTORC1	mammalian target of rapamycin complex 1
CBCAS	cannabichromenic acid synthase	ER	endoplasmic reticulum
TRPV1	transient receptor potential cation channel subfamily V	TRP	transient receptor potential channel
GPR	G protein-coupled receptors	GPR	G protein-coupled receptor
PPARs	peroxisome proliferator-activated receptors	AMPK	AMP-activated protein kinase
ES	endocannabinoid system	CAMKK2	calcium/calmodulin-dependent protein kinase kinase 2
CBRs	CB receptors	CDK	cyclin-dependent kinases
AEA	N-arachidonoylethanolamine	BAD	Bcl-2-associated death promoter
2-AG	2-arachidonoylglycerol	Bcl-2	B-cell lymphoma 2 protein
SCBs	Synthetic cannabinoids	ROS	reactive oxygen species
GPCR	G-protein coupled receptor	TRPM8	transient receptor potential cation channel subfamily M memb
cAMP	adenosine monophosphate	CBG	cannabigerol
MAPK	mitogen-activated protein kinase	Id1	inhibitor of differentiation 1 protein
PI3K	phosphoinositide 3-kinase	ICAM-1	intercellular adhesion molecule 1
COX-2	cyclooxygenase-2	TIMP-1	tissue inhibitor of matrix metalloproteinases-1
CNS	central nervous system	LAK	lymphokine-activated killer

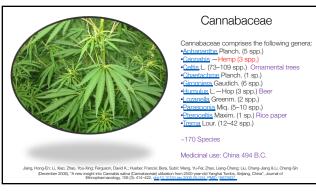


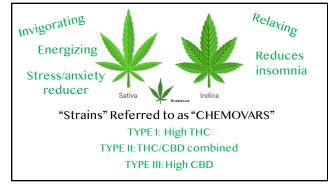


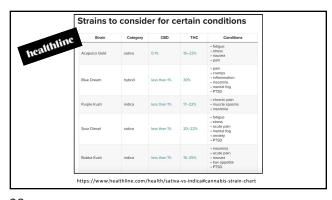


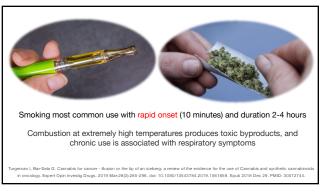
18




Why do you think cannabis sales dropped in 2024 in Canada? Edibles down 12.4% Flowers down 9.3% Total cannabis revenue down 3.27% www.mibizdailv.com

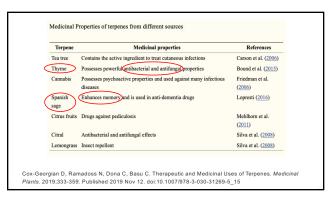


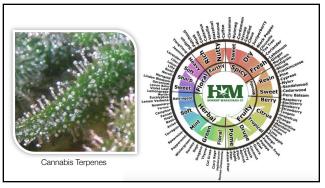


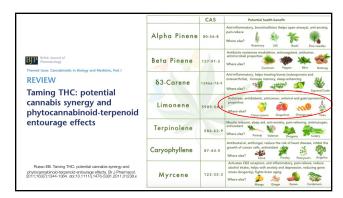

CONCENTRATES

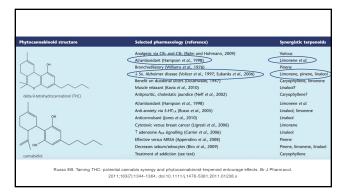
MOST FLOWERS 15-25% THC THC CONCENTRATES 80-90%

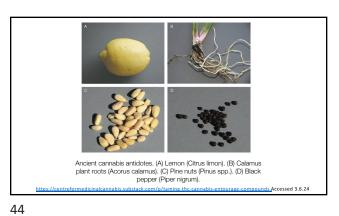
29 28





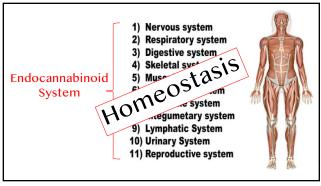


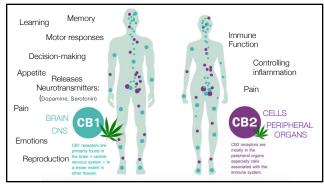


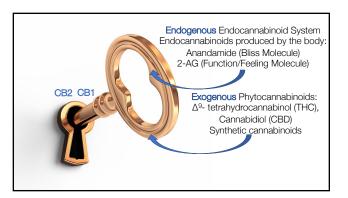


43

45 46

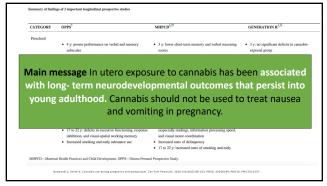


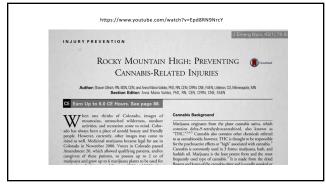


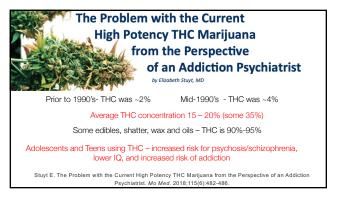


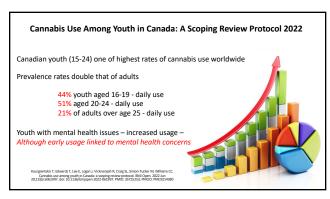
49

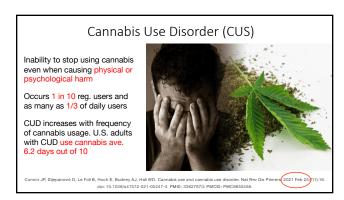
53 54



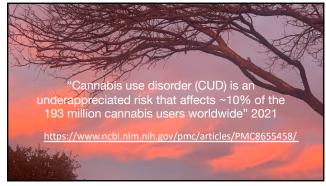


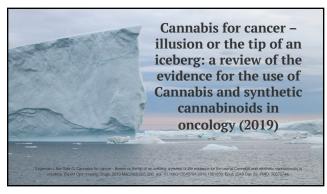


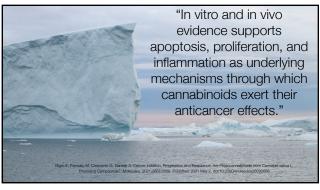

57

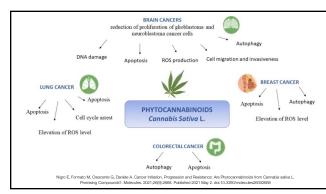


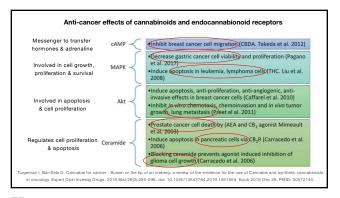
59 60

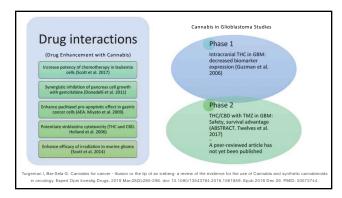


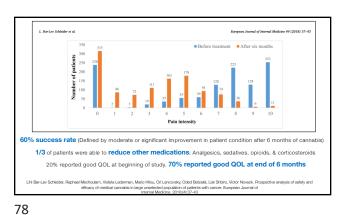

10/23/25



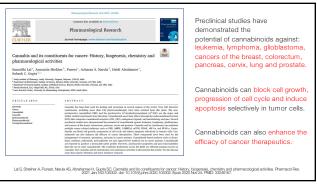

69 70

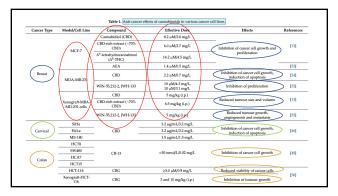


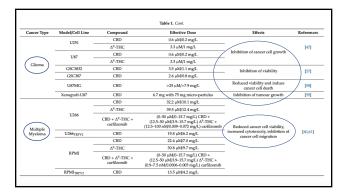

71 72

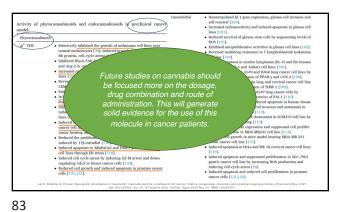


73 74

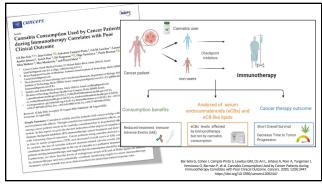


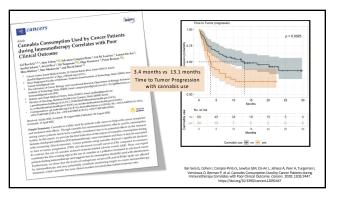


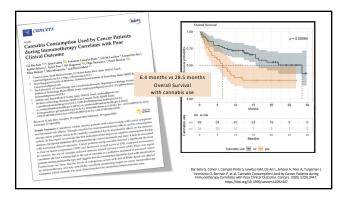

77 78

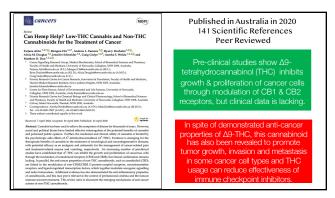


79 80



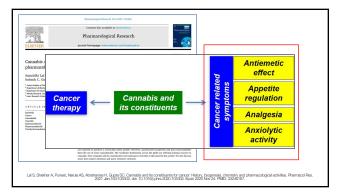

Conflicting reports... Hart et al. demonstrated that while high concentrations of cannabinoids have antiproliferative effects on tumors, treatment of lung, brain and genitourinary carcinoma cell lines with low concentrations results in rapid epidermal growth factor receptor and metalloprotease-dependent cancer cell proliferation geman I, Bar-Sela G. Cannabis for cancer - illusion or the tip of an iceberg: a review of the evidence for the use of Cannabis and synthetic cannabin in oncology. Expert Opin Investig Drugs. 2019 Mar;28(3):285-296. doi: 10.1080/13543784.2019.1561859. Epub 2018 Dec 29. PMID: 30572744.

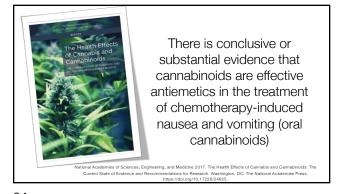

84

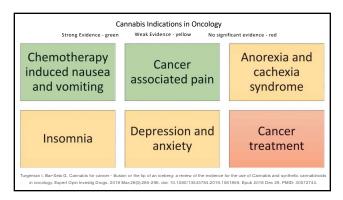

In a multi-variant model, the authors found significantly reduced response rate to immunotherapy in a cohort of 140 patients with, and without cannabionoid treatment after taking into account confounders such as performance status and Cannabis composition.

85 86

		Table 2. Clinical	trials using cannabinoids f	or the treatment of cancer *.		
Trial No.	Cancer Type/s	Study Type/Phase	Treatments	Dose of Cannabinoids or Cannabis Products	Delivery	Outcome k
NCT01812603; NCT01812616	Glioblastoma multiforme (GBM)	Interventional (Clinical Trial)/Phase 1 & Phase 2	Combination of femozolomide (TMZ) and Sativex (1:1 Δ9-THC:CBD)	Dose-intense TMZ with a maximum of 32.4 mg THC and 30 mg CBD per day	Oral spray	Increased 39% of 1-year survival rate
NCT02255292	Solid tumour	Interventional (Clinical Trial)/Phase 2	CBD	Unknown	Unknown	Not yet recruiting
NCT01489826	Solid tumour	Interventional (Clinical Trial)/Phase 1	Dexanabinol (HU-211; a synthetic cannabinoid)	2-36 mg/kg once weekly-3 doses in 21-day cycle	Intravenous infusion	Progression-free survivi increased
NCT01654497	Brain cancer	Interventional (Clinical Trial)/Phase 1	Dexanabinol (HU-211)	2-44 mg/kg once weekly-4 doses in 28-day cycle	Intravenous infusion	No relevant results available
NCT03431363	Head and neck cancer	Observational	Medically certified cannabis with adjuvant chemoradiation	Dosing options to be stratified into 3 groups viz. standard, frail/elderly (age > 65 or ECOG 2), and cannabis-experienced	Smoke	Recruiting
NCT02423239	Hepatocellular carcinoma; pancreatic cancer	Interventional (Clinical Trial)/Phase 1	Desanabinol (HU-211) monotherapy and in combination with chemotherapy	MTD ** once a week	Intravenous infusion	Ongoing
NCT03245658	Pancreatic cancer	Interventional (Clinical Trial)/Phase 2	1.2 Δ ⁹ -THC:CBD	Individually titrated doses on daily basis; for 4 weeks	Oral drops	Not yet recruiting
NCT03529448	GBM	Interventional (Clinical Irial)/ Phase 1 & Phase 2	TN-TC11G (1:1	Total daily dose of 10–160 mg, after meal	Unknown	Not yet recruiting
NCT03617692	Non-small-cell lung carcinoma (NSCLC) metastasis	Observational	Cannabis products	Products, dose and administration frequency decided by study participants	Oral administration	Recruiting


89 90


	$\overline{}$		Table 2. Cont.			
Trial No.	Cancer Type/s	Study Type/Phase	freatments	Dose of Cannabinoids or Cannabis Products	Delivery	Outcome ^k
NCT03052738	Paediatric CNS tumour	Observational	Medical marijuana-derived products	Method of delivery, strain use frequency decided by study		Recruiting
NCT03687034	Glioblastoma	Interventional (Clinical Trial)/Phase 1	CBD with standard of care	Escalating doses of CBD	Oral sublingual formulation	Not yet recruiting
NCT03607643	GI malignancies (pancreas, liver rectum, colon, or gall bladder), multiple myeloma, or GBM	Interventional (Clinical Trial)/Phase 1 & Phase 2	CBD with standard of care chemotherapy	100 mg twice daily before meal	Oral sublingual formulation	Not yet recruiting
ACTRN1261700 1287325	GВM	Interventional (Clinical Trial)/Phase 2	1:1 A*-THC:CBD (6 mg/mL:6 mg/mL) or 1:4 CBD:A*-THC (3.8 mg/mL:15 mg/mL) and standard treatment ***	Starts at 0.25 mL at night and each night titrated up or downwards by 0.05 mL based on participant's response	Oral oily liquids	No relevant results available
ACTRN1261900 0265178	Any cancer	Interventional (Clinical Trial)/phase 4	Δ ⁹ -THC or 1:1 Δ ⁹ -THC:CBD. Combined with standard treatment for advanced cancer and symptoms	Starts at 2.5 mg THC three times a day in cannabis naive attients, and 5 mg THC three times a day in previous users. Dosage adjusted based on patient's response up to a maximum of 30 mg THC per day.	Oral oily liquids	Recruiting
ACTRN1261900 0037101	Any cancer	Interventional (Clinical Trial)/Phase 2	1:1 Δ*-THC:CBD	Total daily dose of 2.5 mg:2.5 mg-30 mg:30 mg	Oral oily liquid	Recruiting
ACTRN1261800 1220257	Any cancer	Interventional (Clinical Trial)/Phase 2	CBD	Total daily dose of 50 mg-600 mg	Oral oily liquid	Recruiting
			\ /			

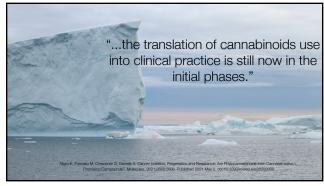

Ongoing Clinical Trials

- THC, CBD combinations
- THC, CBD independent or combined with chemotherapies
- THC, CBD independent or combined with radiotherapies
- THC, CBD independent or combined with immunotherapies

91 92

Although robust, the main problem with anticancer research today is that it is still limited
to cell lines and animal studies, precluding
meaningful conclusions and extrapolations
in human cancer

Turgenan I. Bar-Sela G. Gannable for cancer - Illusion or the tip of an icalibrary a review of the evidence for the use of
Cannable and synthetic cannabinoids in oncology. Expert Opin Investig Oruge. 2019 Mar.28(3):285-296. doi:
10.1080/13543784.2019.1561850. Epub 2018 Deir 29. PMID. 30972744


95 96

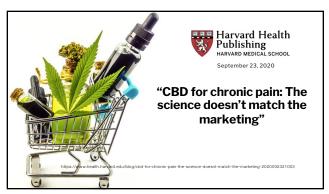
Integrative Therapies in Cancer Care: An Update on the Guidelines May 31, 2024

American Society of Clinical Oncology and the Society for Integrative Oncology have collaborated to develop guidelines for the application of integrative approaches in the management of anxiety, depression, fatigue and use of cannabinoids and cannabis in patients with cancer

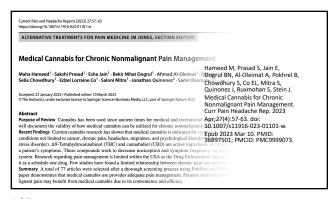
Clinicians should recommend against using cannabis or cannabinoids as a cancer-directed treatment unless within the context of a clinical trial...evidence remains insufficient...with exception to augment an antiemetic regimen

Gower, K. Marienoick, 203 SA, Lee ST, Lanchelli C, Marka A, Integrative Therapies in Closor Care. An Update on the Guideline. Am Soc Clin Orcol Educ 8000, 2024 April 40194-811954, de 20 12/00(1892), 411954, Preto 1802048.

97 98



According to a 2003 study in the Journal of Cannabis Therapeutics 80% palliative care patients were comfortable with the use of cannabis for pain management



101 102

103 104

Take Aways...

> 60% of medical licenses issued for use of medicinal cannabis are for chronic pain (2017)

CB1 receptors can decrease neurotransmitters thereby reducing pain
CB2 receptors can reduce inflammation pain and alter release of pro-inflammatory cytokines

Most patients surveyed use more than one form of cannabis and most surveyed use combinations of Indica and Sativa

Majority preferred balanced THC:CBD ratios or high CBD ratios; only a minority preferred high THC ratios

Many but not all studies show a reduction in opioids when using cannabis for pain mgmt

Hameed M, Prasad S, Jain E, Dogrul BN, Al-Cleimat A, Pokhrel B, Chowdhury S, Co EL, Mitra S, Quinonez J, Rusmohan S, Stein J. Medical Cannabis for Chronic Nonmalignant Pain Management. Curr Pain Headache Rep. 2023 Apr;27(4):57-63. doi: 10.1007/s11916-023-01101-w. Epub 2023 Mar 10. PMID: 36897501; PMID: PMIC9999073.

105 106

There is conclusive or substantial evidence that cannabinoids are effective for the treatment of chronic pain in adults (cannabis).

cademies of Sciences, Engineering, and Medicine 2017. The Health Effects of Cannabis and Cannabinoids: The nt State of Evidence and Recommendations for Research. Washington, DC: The National Academies Press.

Medical Cannabis Reduces Chronic or Neuropathic Pain in Advanced Cancer Patients (2017)

Review 1975-2017: 5 Clinical studies evaluating effect of THC or CBD on controlling cancer pain $\,$

- THC oil capsules
- THC:CBD oromucosal spray
- · THC oromucosal spray

Doses 2.7 - 42.2 mg/day THC and 0-40 mg CBD daily

Higher THC correlated in increased pain relief in some studies 1 Study found sig. pain relief in low doses: 1.7 – 10.8 mg THC in combination 2.5 - 10 mg CBD

Blake A, Wan BA, Malek L, DeAngelis C, Diaz P, Lao N, Chow E, O'Hearn S. A selective review of medical cannabis in cancer pain management. Ann Palliat Med 2017;6(Suppl 2):S215-S222. doi: 10.21037/apm.2017.08.05

107 108

Cannabis and cannabinoids for the treatment of people with chronic noncancer pain conditions: a systematic review and meta-analysis of controlled and observational studies (2018)

104 studies were eligible (9958 participants)

Studies that showed 30% reduction in pain were: 29.0% (cannabinoids) vs 25.9% (placebo)

For 50% reduction in pain, outcomes were 18.2% (cannabinoids) vs 14.4% (placebo)

Pooled change in pain intensity with cannabis/cannabinoids was equivalent to a 3 mm reduction on a 100 mm visual analogue scale greater than placebo groups

Evidence for effectiveness of cannabinoids in CNCP is limited

rgs E, Campbell G, Hall WD, Nelsen S, Zagic D, Rahman P, Murnion B, Famell M, Weler M, Degenhardt L. Cannabis and cannabinoids for the treatment of per th chronic noncancer pain conditions: a systematic review and mete s

A large meta-analysis by Whiting et al. (2019) reviewed 19 studies that evaluated sleep as an outcome as well as two trials specifically investigating sleep problems and found a manual association between cannabinoids and improved sleep quality. The study cohort included patients with chronic pain inproved sleep quality. The study cohort included patients with chronic pain and multiple sclerosis; thus, implications for cancer patients are not certain

109 110

Medicinal Cannabis for Inflammatory Bowel
Disease: A Survey of Perspectives, Experiences,
and Current Use in Australian Patients (2020)

Online survey IBD patients / 838 responses
Results showed 25.3% (n = 212) respondents were current or previous users of MC
(18.1%
Only 3 respondents reported using legally assessed products
Usage: smoking (joints 34.2%; water pipe/bongs 14.5%) or orar liquid (19.7%)

IBD symptoms reported as positively affected by cannabis included abdominal
pain, stress, sleep, cramping, and anxiety. Most users (92.7%) endorsed cannabis
as effective in symptom management.

Lower back pain (LBP) leading cause of disability globally

Persistent pain for more than 3 months considered chronic LBP

Over 90% of LBP is mechanical: damage to spinal joints, discs, vertebrae or soft tissue

Binding CB1 and CB2 receptors blocks pain-inducing neurotransmitters

THC binds CB1 and CB2 receptors and CBD stimulates release of β-endorphin, suppressing acute and chronic pain, and CBD promotes production of body's own cannabinoids

THC and CBD can be used separately but often used together to moderate psychoactive effects of THC

Senderovich H, Wagman H, Zhang D, Vinoraj D, Waicus S: The Effectiveness of Cannable and Cannable Dersatrose in Testing Cover Back Pain

112

111

Systematic Review (2021) LBP and Cannabls 1/23 articles met inclusion oriteria

Medical cannabls reported to be the highest use substance for LBP, aged population (65-79)

Mixed Reviews:

Some studies reported high percentage of patients satisfied with cannabis for mgmt, of back pain Some studies reported minimal relief from chronic pain with THC/CBD

Differences in analgesic effects among various administration methods of THC and CBD along with recommended ratios are CURRENTLY UNCLEAR and remain a research priority.

Studies focusing on the role of cannabis in pain and anxiety reduction are warranted as current evidence is contradictory.

Senderovich H, Wagman H, Zhang D, Vinorij D, Wacus S: The Effectiveness of Cannabis and Carleib & Dervatives in Treating Cover Back Pain in the Aged Expedience & Cannabis and Carleib & Dervatives in Treating Cover Back Pain in the Aged Expedience & Cannabis and Carleib & Dervatives in Treating Cover Back Pain in the Aged Expedience & Cannabis and Carleib & Dervatives in Treating Cover Back Pain in the Aged Expedience & Cannabis and Carleib & Dervatives in Treating Cover Back Pain in the Aged Expedience & Cannabis and Carleib & Dervatives in Treating Cover Back Pain

Cannabis-Based Medicines and Medical Cannabis for Chronic Neuropathic Pain (2021)

Key Points

Current systematic reviews on cannabis-based medicines and medical cannabis for chronic neuropathic pain come (viewergent conclusions on efficac)

Physicians who decide to use cannabis-based medicines or medical cannabis must be mindful of the limited sound evidence for effect and concerns for harms.

Parable F, Tale 1, Flachwise MA, Hazer W, Carnabis-Based Medical Cannabis for Choron Reuropathic Fain. OS Chap., 2022 Jan;38(1):31-44. doi: 10.3007/MCISS-621 COST? ve (pds.) 2021 To 2, 12, MICO. 34802112, MICO. PROCEZERSIA.

113 114

Medical cannabis or cannabinoids for chronic pain: a clinical practice guideline (2021)

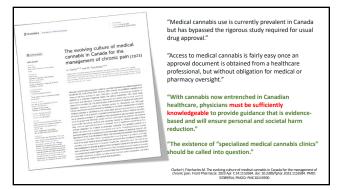
Expert guideline panel comprised of physicians, patients & methodologists

4 systematic reviews analyzing benefits versus harms

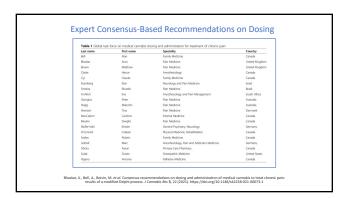
"The guideline expert panel issued a weak recommendation to offer a trial of non-inhaled medical cannabis or cannabinoids, in addition to standard care and management (if not sufficient), for people living with chronic cancer or non-cancer pain."

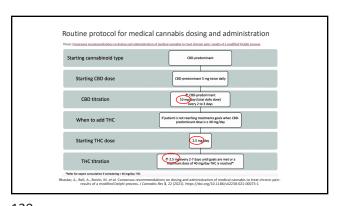
Bluor M. Vardendelment P. Zing, L. Mon J. Wangen, Campbell F. Grane I. F. Arrigentis, Busiced Rev. Camer E. George E. Brown V. Campel E.

Medical Cannabis-Based Products for Chronic Pain: A Systematic Review (2022)

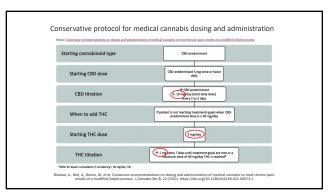

18 RCT & 7 Cohort Studies Duration: 1-6 months 56% Enrolled experienced neuropathic pain 3-89% females, per study

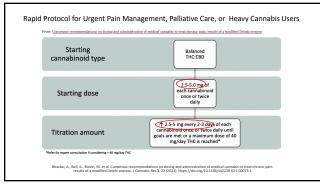
Synthetic products with High THC:CBD ratio (>98%THC) = moderate improvement in pain severity (increased risk for sedation and dizziness)


Sublingual sprays with comparable THC:CBD ratio (1.1:1) = small improvement in pain severity (increased risk for sedation, dizziness and nausea)

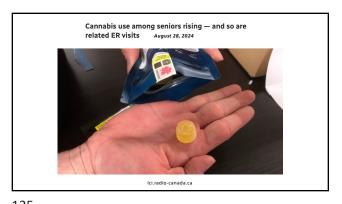

McDonagh MS, Morasco BJ, Wagner J, Ahmed AY, Fu R, Kansagara D, Chou R. Cannabis-Based Products for Chronic Pain : A Systematic Review. Ann Intern Med. 2022 Aug;175(8):1143-1153. doi: 10.7326/M21-4520. Epub 2022 Jun 7. PMID: 35667066.

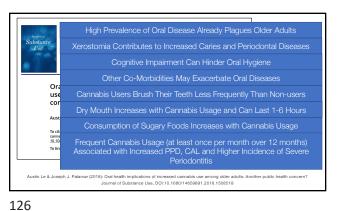
115 116



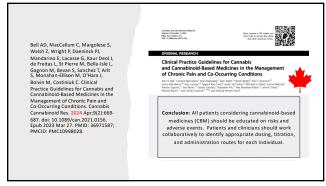


119 120





121 122



125



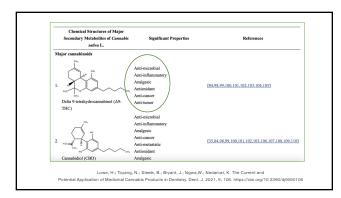
127 128

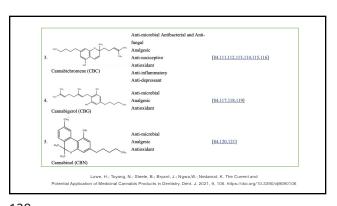
132

Oral health

In a statewide survey of California dentists and dental hygienists, only 1 in 4 reported asking patients about cannabis, in contrast to the approximately 60% who asked specifically about tobacco cigarettes.

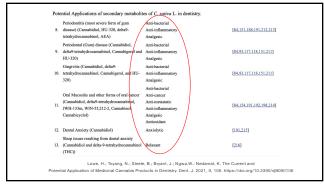
Chaffee BW, Urata J, Couch ET, Silverstein S. Dental professionals' engagement in tobacco, electronic cigarette counseling. JDR Clin Trans Res 2020April;5(2):133–145. doi: 10.1177/2380084419861384. Epub 2019 Jul 19.


133 134



"Of particular interest is the potential for the existence of synergistic ratios between cannabinoids which when combined, can produce optimal anti-bacterial, anti-inflammatory, antioxidant and analgesic effects.

One example is between CBD and CBG where studies on neuroinflammation, a key factor in amyotrophic lateral sclerosis (ALS) show that, when combined, their benefits are enhanced."


135 136

137 138

1.	Cannabinoids		
1.			
	General oral hygiene (Cannabidiol, delta9- tetrahydrocannabinol ajulemic acid, Cannabigerol)	Antifungal Antibacterial	[41,84,93,105,117,118,210]
	Toothache (Cannabidiol, HU-320)	Analgesic	[41,151,163]
3.	Dental caries/cavities (Cannabidiol, Cannabigerol and Delta9- tetrahydrocannabinol)	Anti-bacterial Analgesic	[41,47,48,84,93,117,118,191,211]
	Abscesses (Cannabidiol and delta9- tetrahydrocannabinol)	Anti-bacterial Anti-pruritic	[191]
	Prevention of biofilm attachment on teeth (Cannabidiol and delta9-tetrahydrocannabinol)	Anti-bacterial	[84,191]
6.	Burning Mouth Syndrome (Cannabidiol)	Analgesic	[191]
	Oral and Salivary Gland Cancers (Cannabidiol)	Anti-cancer Anti-metastatic	[191]

139 140

| Compare Los Commands | Commands

Cannabis: A joint problem for patients and the dental profession

Table 2 The difference between tobacco and cannabis

Cannabis joints are usually smoked for a longer period of time than tobacco.⁴

Cannabis joints are usually smoked to a shorter joint length, which results in a greater number of toxins entering the mouth.⁴

Cannabis has a higher combustion temperature compared to tobacco.⁴

There is greater carboxyhaemoglobin concentration and tar retention in lower airway in cannabis smokers.⁴

Tobacco found in cigarettes is regulated. Whereas, cannabis is a non-regulated substance.

Tobacco is usually smoked more frequently than cannabis due to the shorter half life of nicotine.⁴

Joshi, S., Ashley, M. Cannabis: A joint problem for patients and the dental profession. Br Dent J 220, 597-601 (2016), https://doi.org/10.1016/j.bit.2016.118 (2016.118 (2016.118 Captare J. Jafe A. Capaland J. Cannabis smoking and respiratory health: Consideration of the literature. Respiratory of 2014; 3.056-602.

143 144

Cannabis: A joint problem for patients and the dental profession

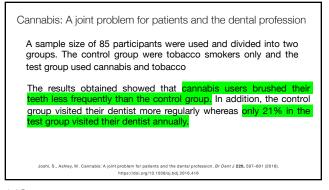
22-year-old patient who smoked six cannabis 'joints' a day for the last 8 years.

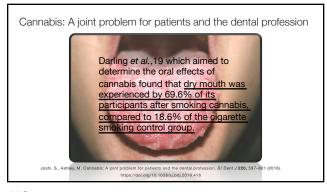
Cannabis users surveyed: 63% who experienced increased hunger post use – favored sweets

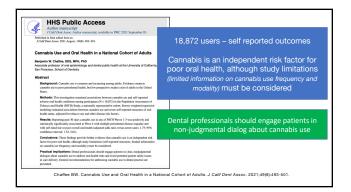
Various studies show 2.5 – 6 times higher decay rates in cannabis users compare to non-users

Josh. S. Ashley, M. Cannabis: A joint problem for patients and the dental profession. Br Dent J 220, 587-601 (2016).

https://doi.org/10.1088/j.bdj.2016.418

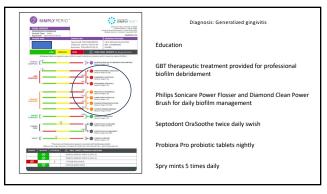

Cannabis: A joint problem for patients and the dental profession


Table 3 A summary of the oral implications of cannabis use


Oral implications of cannabis use

Increased risk of caries.
Increased risk of periodontal disease.
Increased risk of method in puriodontal disease.
Increased risk of periodontal disease.
Increased risk of recased risk of periodontal disease.
Increased risk of recased risk of periodontal disease.
Increased risk of recased risk of recased risk of periodontal disease.
Increased risk of recased risk of recased risk of periodontal disease.
Increased risk of recased risk of recased risk of recased risk of recased risk of periodontal disease.
Increased risk of recased risk of re

145 146

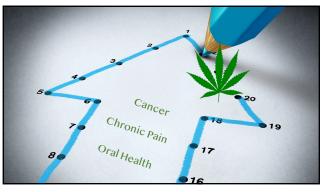


What's your experience?

150 151

152 153

10/23/25



154 156

157 158

159 160